Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 88, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690845

RESUMO

Transient receptor potential vanilloid 3 (TRPV3) belongs to the TRP ion channel super family and functions as a nonselective cation channel that is highly permeable to calcium. This channel is strongly expressed in skin keratinocytes and is involved in warmth sensation, itch, wound healing and secretion of several cytokines. Previous studies showed that anoctamin1 (ANO1), a calcium-activated chloride channel, was activated by calcium influx through TRPV1, TRPV4 or TRPA1 and that these channel interactions were important for TRP channel-mediated physiological functions. We found that ANO1 was expressed by normal human epidermal keratinocytes (NHEKs). We observed that ANO1 mediated currents upon TRPV3 activation of NHEKs and mouse skin keratinocytes. Using an in vitro wound-healing assay, we observed that either a TRPV3 blocker, an ANO1 blocker or low chloride medium inhibited cell migration and proliferation through p38 phosphorylation, leading to cell cycle arrest. These results indicated that chloride influx through ANO1 activity enhanced wound healing by keratinocytes.


Assuntos
Cálcio , Cloretos , Animais , Camundongos , Humanos , Cálcio/metabolismo , Cloretos/metabolismo , Canais Iônicos/metabolismo , Queratinócitos/metabolismo , Cicatrização , Canais de Cátion TRPV/metabolismo , Anoctamina-1/metabolismo , Proteínas de Neoplasias/metabolismo
2.
Cell Rep ; 38(10): 110462, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263589

RESUMO

Nociceptors can fine-tune local or systemic immunity, but the mechanisms of nociceptive modulation in endotoxic death remain largely unknown. Here, we identified C-type lectin Reg3γ as a nociceptor-enriched hormone that protects the host from endotoxic death. During endotoxemia, nociceptor-derived Reg3γ penetrates the brain and suppresses the expression of microglial indoleamine dioxygenase 1, a critical enzyme of the kynurenine pathway, via the Extl3-Bcl10 axis. Endotoxin-administered nociceptor-null mice and nociceptor-specific Reg3γ-deficient mice exhibit a high mortality rate accompanied by decreased brain HK1 phosphorylation and ATP production despite normal peripheral inflammation. Such metabolic arrest is only observed in the brain, and aberrant production of brain quinolinic acid, a neurotoxic metabolite of the kynurenine pathway, causes HK1 suppression. Strikingly, the central administration of Reg3γ protects mice from endotoxic death by enhancing brain ATP production. By identifying nociceptor-derived Reg3γ as a microglia-targeted hormone, this study provides insights into the understanding of tolerance to endotoxic death.


Assuntos
Cinurenina , Microglia , Proteínas Associadas a Pancreatite/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Endotoxinas/metabolismo , Hormônios/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Microglia/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Nociceptores/metabolismo
3.
Front Mol Neurosci ; 14: 705023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970116

RESUMO

Kampo medicine has been practiced as traditional medicine (TM) in Japan. Kampo medicine uses Kampo formulae that are composed of multiple crude drugs to make Kampo formulae. In Japan, Kampo formulae are commonly used instead of or combined with Western medicines. If drug therapy that follows the guidelines for neuropathic pain does not work or cannot be taken due to side effects, various Kampo formulae are considered as the next line of treatment. Since Kampo formulae are composed of two or more kinds of natural crude drugs, and their extracts contain many ingredients with pharmacological effects, one Kampo formula usually has multiple effects. Therefore, when selecting a formula, we consider symptoms other than pain. This review outlines the Kampo formulae that are frequently used for pain treatment and their crude drugs and the basic usage of each component. In recent years, Yokukansan (YKS) has become one of the most used Kampo formulae for pain treatment with an increasing body of baseline research available. We outline the known and possible mechanisms by which YKS exerts its pharmacologic benefits as an example of Kampo formulae's potency and holistic healing properties.

4.
J Physiol Sci ; 71(1): 23, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34429071

RESUMO

"Salty taste" sensation is evoked when sodium and chloride ions are present together in the oral cavity. The presence of an epithelial cation channel that receives Na+ has previously been reported. However, no molecular entity involving Cl- receptors has been elucidated. We report the strong expression of transmembrane channel-like 4 (TMC4) in the circumvallate and foliate papillae projected to the glossopharyngeal nerve, mediating a high-concentration of NaCl. Electrophysiological analysis using HEK293T cells revealed that TMC4 was a voltage-dependent Cl- channel and the consequent currents were completely inhibited by NPPB, an anion channel blocker. TMC4 allowed permeation of organic anions including gluconate, but their current amplitudes at positive potentials were less than that of Cl-. Tmc4-deficient mice showed significantly weaker glossopharyngeal nerve response to high-concentration of NaCl than the wild-type littermates. These results indicated that TMC4 is a novel chloride channel that responds to high-concentration of NaCl.


Assuntos
Cloreto de Sódio , Paladar , Amilorida , Animais , Canais de Cloreto/genética , Células HEK293 , Humanos , Proteínas de Membrana , Camundongos
5.
Front Pharmacol ; 12: 628968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897420

RESUMO

The transmembrane 16 (TMEM16) family contains 10 subtypes, and the function of each protein is different. TMEM16A is a calcium-activated chloride channel involved in physiological and pathological situations. Liquiritigenin is an aglycone derived from Glycyrrhiza glabra, and it is generated via the metabolism of enterobacterial flora. It has been known that liquiritigenin reduces pain sensation involving TMEM16A activation in primary sensory neurons. In addition, other pharmacological effects of liquiritigenin in physiological functions involving TMEM16A have been reported. However, the relationship between TMEM16A and liquiritigenin is still unknown. Therefore, we hypothesized that TMEM16A is inhibited by liquiritigenin. To confirm this hypothesis, we investigated the effect of liquiritigenin on TMEM16A currents evoked by intracellular free calcium in HEK293T cells transfected with TMEM16A. In this study, we found that liquiritigenin inhibited the mouse and human TMEM16A currents. To further confirm its selectivity, we also investigated its pharmacological effects on other ion channels, including transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), which are non-selective cation channels involved in pain sensation. However, liquiritigenin did not inhibit the currents of TRPV1 and TRPA1 induced by capsaicin and allyl isothiocyanate, respectively. Therefore, our findings indicate that selective TMEM16A inhibition could be one molecular mechanism that explains liquiritigenin-induced pain reduction. Additionally, we also investigated the inhibitory effects of estrogens on TMEM16A because liquiritigenin reportedly binds to the estrogen receptor. In this study, a pregnancy-dependent estrogen, estriol, significantly inhibited TMEM16A. However, the efficacy was weak. Although there is a possibility that TMEM16A activity could be suppressed during pregnancy, the physiological significance seems to be small. Thus, the inhibitory effect of estrogen might not be significant under physiological conditions. Furthermore, we investigated the effect of dihydrodaidzein, which is an analog of liquiritigenin that has a hydroxyphenyl at different carbon atom of pyranose. Dihydrodaidzein also inhibited mouse and human TMEM16A. However, the inhibitory effects were weaker than those of liquiritigenin. This suggests that the efficacy of TMEM16A antagonists depends on the hydroxyl group positions. Our finding of liquiritigenin-dependent TMEM16A inhibition could connect the current fragmented knowledge of the physiological and pathological mechanisms involving TMEM16A and liquiritigenin.

6.
Front Immunol ; 12: 786511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069559

RESUMO

Complex regional pain syndrome (CRPS) is a chronic pain syndrome that occurs in tissue injuries as the result of surgery, trauma, or ischemia. The clinical features of this severely painful condition include redness and swelling of the affected skin. Intriguingly, it was recently suggested that transient receptor potential ankyrin 1 (TRPA1) is involved in chronic post-ischemia pain, a CRPS model. TRPA1 is a non-selective cation channel expressed in calcitonin gene-related peptide (CGRP)-positive primary nociceptors that becomes highly activated in ischemic conditions, leading to the generation of pain. In this review, we summarize the history of TRPA1 and its involvement in pain sensation, inflammation, and CRPS. Furthermore, bone atrophy is also thought to be a characteristic clinical sign of CRPS. The altered bone microstructure of CRPS patients is thought to be caused by aggravated bone resorption via enhanced osteoclast differentiation and activation. Although TRPA1 could be a target for pain treatment in CRPS patients, we also discuss the paradoxical situation in this review. Nociceptor activation decreases the risk of bone destruction via CGRP secretion from free nerve endings. Thus, TRPA1 inhibition could cause severe bone atrophy. However, the suitable therapeutic strategy is controversial because the pathologic mechanisms of bone atrophy in CRPS are unclear. Therefore, we propose focusing on the remission of abnormal bone turnover observed in CRPS using a recently developed concept: senso-immunology.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/imunologia , Síndromes da Dor Regional Complexa/imunologia , Síndromes da Dor Regional Complexa/terapia , Percepção da Dor , Canal de Cátion TRPA1/imunologia , Animais , Síndromes da Dor Regional Complexa/patologia , Humanos
7.
Medicines (Basel) ; 7(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348580

RESUMO

Background: Fentanyl can induce acute opioid tolerance and postoperative hyperalgesia when administered at a single high dose; thus, this study examined the analgesic efficacy of a combination of fentanyl and Yokukansan (YKS). Methods: Rats were divided into control, formalin-injected (FOR), YKS-treated+FOR (YKS), fentanyl-treated+FOR (FEN), and YKS+FEN+FOR (YKS+FEN) groups. Acute pain was induced via subcutaneous injection of formalin into the paw. The time engaged in pain-related behavior was measured. Results: In the early (0-10 min) and intermediate (10-20 min) phases, pain-related behavior in the YKS+FEN group was significantly inhibited compared with the FOR group. In the late phase (20-60 min), pain-related behavior in the FEN group was the longest and significantly increased compared with the YKS group. We explored the influence on the extracellular signal-regulated kinase (ERK) pathway in the spinal cord, and YKS suppressed the phosphorylated ERK expression, which may be related to the analgesic effect of YKS in the late phase. Conclusions: These findings suggest that YKS could reduce the use of fentanyl and combined use of YKS and fentanyl is considered clinically useful.

8.
Commun Biol ; 3(1): 716, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247229

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) is a non-selective calcium-permeable cation channel that is widely expressed and activated in various neurons and glial cells in the nervous system. Schwann cells (SCs) are primary glia cells that wrap around axons to form the myelin sheath in the peripheral nervous system. However, whether TRPV4 is expressed and functions in SCs is unclear. Here, we demonstrate functional expression of TRPV4 in mouse SCs and investigated its physiological significance. Deletion of TRPV4 did not affect normal myelin development for SCs in sciatic nerves in mice. However, after sciatic nerve cut injury, TRPV4 expression levels were remarkably increased in SCs following nerve demyelination. Ablation of TRPV4 expression impaired the demyelinating process after nerve injury, resulting in delayed remyelination and functional recovery of sciatic nerves. These results suggest that local activation of TRPV4 could be an attractive pharmacological target for therapeutic intervention after peripheral nerve injury.


Assuntos
Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Temperatura Corporal , Células Cultivadas , Doenças Desmielinizantes , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/fisiologia , Sistema Nervoso Periférico/metabolismo , Células de Schwann/patologia , Nervo Isquiático/lesões , Canais de Cátion TRPV/fisiologia
9.
Cell ; 182(3): 609-624.e21, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640190

RESUMO

Gastrointestinal enterochromaffin cells regulate bone and gut homeostasis via serotonin (5-hydroxytryptamine [5-HT]) production. A recent report suggested that gut microbes regulate 5-HT levels; however, the precise underlying molecular mechanisms are unexplored. Here, we reveal that the cation channel Piezo1 in the gut acts as a sensor of single-stranded RNA (ssRNA) governing 5-HT production. Intestinal epithelium-specific deletion of mouse Piezo1 profoundly disturbed gut peristalsis, impeded experimental colitis, and suppressed serum 5-HT levels. Because of systemic 5-HT deficiency, conditional knockout of Piezo1 increased bone formation. Notably, fecal ssRNA was identified as a natural Piezo1 ligand, and ssRNA-stimulated 5-HT synthesis from the gut was evoked in a MyD88/TRIF-independent manner. Colonic infusion of RNase A suppressed gut motility and increased bone mass. These findings suggest gut ssRNA as a master determinant of systemic 5-HT levels, indicating the ssRNA-Piezo1 axis as a potential prophylactic target for treatment of bone and gut disorders.


Assuntos
Osso e Ossos/metabolismo , Colo/metabolismo , Motilidade Gastrointestinal/genética , Canais Iônicos/metabolismo , RNA/metabolismo , Serotonina/biossíntese , Serotonina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Osso e Ossos/citologia , Cálcio/metabolismo , Colite/genética , Colite/metabolismo , Colite/prevenção & controle , Colo/fisiologia , Fezes/química , Feminino , Motilidade Gastrointestinal/fisiologia , Células HEK293 , Humanos , Imuno-Histoquímica , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Canais Iônicos/genética , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Osteoclastos/metabolismo , Pirazinas/farmacologia , RNA/farmacologia , Ribonuclease Pancreático/administração & dosagem , Serotonina/sangue , Serotonina/deficiência , Tiadiazóis/farmacologia
10.
Cell Rep ; 32(2): 107906, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668247

RESUMO

Zinc finger protein St18 was initially reported as candidate tumor suppressor gene, and also suggested that fibroblast St18 positively regulates NF-κB activation. Despite the pleiotropic functions of St18, little is known about its roles in macrophages. Here, we report that myeloid St18 is a potent inhibitor of VEGF-A. Mice lacking St18 in myeloid lineages exhibit increased retinal vasculature with enhanced serum VEGF-A concentrations. Despite the normal activation of NF-κB target genes, these mice are highly susceptible to LPS-induced shock, polymicrobial sepsis, and experimental colitis, accompanied by enhanced vascular and intestinal leakage. Pharmacological inhibition of VEGF signaling rescued the high mortality rate of myeloid-specific St18-deficient mice in response to inflammation. Mechanistically, St18 directly binds to Sp1 and attenuates its activity, leading to the suppression of Sp1 target gene VEGF-A. Using mouse genetic and pharmacological models, we reveal myeloid St18 as a critical septic death protector.


Assuntos
Macrófagos/metabolismo , Proteínas Repressoras/metabolismo , Sepse/patologia , Sepse/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Dedos de Zinco , Animais , Ceco/patologia , Linhagem da Célula , Colite/complicações , Colite/patologia , Sulfato de Dextrana , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Inflamação/patologia , Ligadura , Lipopolissacarídeos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Punções , Células RAW 264.7 , Proteínas Repressoras/deficiência , Sepse/complicações , Choque Séptico/microbiologia , Choque Séptico/patologia , Transdução de Sinais , Fator de Transcrição Sp1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Int J Mol Sci ; 20(14)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336748

RESUMO

Receptor-type ion channels are critical for detection of noxious stimuli in primary sensory neurons. Transient receptor potential (TRP) channels mediate pain sensations and promote a variety of neuronal signals that elicit secondary neural functions (such as calcitonin gene-related peptide [CGRP] secretion), which are important for physiological functions throughout the body. In this review, we focus on the involvement of TRP channels in sensing acute pain, inflammatory pain, headache, migraine, pain due to fungal infections, and osteo-inflammation. Furthermore, action potentials mediated via interactions between TRP channels and the chloride channel, anoctamin 1 (ANO1), can also generate strong pain sensations in primary sensory neurons. Thus, we also discuss mechanisms that enhance neuronal excitation and are dependent on ANO1, and consider modulation of pain sensation from the perspective of both cation and anion dynamics.


Assuntos
Anoctamina-1/metabolismo , Proteínas de Neoplasias/metabolismo , Manejo da Dor , Dor/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Anoctamina-1/genética , Humanos , Canais Iônicos/metabolismo , Proteínas de Neoplasias/genética , Dor/etiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Canais de Potencial de Receptor Transitório/genética
12.
J Clin Invest ; 129(9): 3578-3593, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31355778

RESUMO

TAR DNA-binding protein 43 kDa (TDP-43), encoded by TARDBP, is an RNA-binding protein, the nuclear depletion of which is the histopathological hallmark of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder affecting both upper and lower motor neurons. Besides motor symptoms, patients with ALS often develop nonneuronal signs including glucose intolerance, but the underlying pathomechanism is still controversial, i.e., whether it is impaired insulin secretion and/or insulin resistance. Here, we showed that ALS subjects reduced early-phase insulin secretion and that the nuclear localization of TDP-43 was lost in the islets of autopsied ALS pancreas. Loss of TDP-43 inhibited exocytosis by downregulating CaV1.2 calcium channels, thereby reducing early-phase insulin secretion in a cultured ß cell line (MIN6) and ß cell-specific Tardbp knockout mice. Overexpression of CaV1.2 restored early-phase insulin secretion in Tardbp knocked-down MIN6 cells. Our findings suggest that TDP-43 regulates cellular exocytosis mediated by L-type voltage-dependent calcium channels and thus plays an important role in the early phase of insulin secretion by pancreatic islets. Thus, nuclear loss of TDP-43 is implicated in not only the selective loss of motor neurons but also in glucose intolerance due to impaired insulin secretion at an early stage of ALS.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exocitose , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Esclerose Amiotrófica Lateral/metabolismo , Animais , Glicemia/metabolismo , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Feminino , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Destreza Motora , Neurônios/metabolismo , Técnicas de Patch-Clamp
13.
J Physiol Sci ; 69(3): 553, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30734903

RESUMO

The article Hypotonicity-induced cell swelling activates TRPA1, written by Fumitaka Fujita, Kunitoshi Uchida, Yasunori Takayama, Yoshiro Suzuki, Masayuki Takaishi and Makoto Tominaga, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 16 June 2017 without open access.

14.
iScience ; 6: 306-318, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30240621

RESUMO

Candida albicans infection can cause skin, vulvar, or oral pain. Despite the obvious algesic activity of C. albicans, the molecular mechanisms of fungal nociception remain largely unknown. Here we show that the C. albicans-specific signaling pathway led to severe mechanical allodynia. We discovered that C. albicans-derived ß-glucan stimulated nociceptors depending on Dectin-1, and two pathways in inflammatory pain. The major pathway operates via the Dectin-1-mediated ATP-P2X3/P2X2/3 axis through intercellular relationships between keratinocytes and primary sensory neurons, which depends on the ATP transporter vesicular nucleotide transporter (VNUT). The other pathway operates via the Dectin-1-mediated PLC-TRPV1/TRPA1 axis in primary sensory neurons. Intriguingly, C. albicans-derived ß-glucan has the ability to enhance histamine-independent pruritus, and VNUT inhibitor clodronate can be used to treat unpleasant feelings induced by ß-glucan. Collectively, this is the first report to indicate that Dectin-1 and VNUT mediated innate sensory mechanisms that detect fungal infection.

15.
J Exp Biol ; 221(Pt 21)2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30190317

RESUMO

Histamine is the only known neurotransmitter released by arthropod photoreceptors. Synaptic transmission from photoreceptors to second-order neurons is mediated by the activation of histamine-gated chloride channels (HCLs). These histaminergic synapses have been assumed to be conserved among insect visual systems. However, our understanding of the channels in question has thus far been based on studies in flies. In the butterfly Papilio xuthus, we have identified two candidate histamine-gated chloride channels, PxHCLA and PxHCLB, and studied their physiological properties using a whole-cell patch-clamp technique. We studied the responses of channels expressed in cultured cells to histamine as well as to other neurotransmitter candidates, namely GABA, tyramine, serotonin, d-/l-glutamate and glycine. We found that histamine and GABA activated both PxHCLA and PxHCLB, while the other molecules did not. The sensitivity to histamine and GABA was consistently higher in PxHCLB than in PxHCLA. Interestingly, simultaneous application of histamine and GABA activated both PxHCLA and PxHCLB more strongly than either neurotransmitter individually; histamine and GABA may have synergistic effects on PxHCLs in the regions where they co-localize. Our results suggest that the physiological properties of the histamine receptors are basically conserved among insects, but that the response to GABA differs between butterflies and flies, implying variation in early visual processing among species.


Assuntos
Borboletas/fisiologia , Receptores Histamínicos/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Borboletas/genética , Canais de Cloreto/fisiologia , Feminino , Células HEK293 , Histamina/farmacologia , Humanos , Masculino , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Transfecção , Ácido gama-Aminobutírico/farmacologia
16.
Nat Commun ; 9(1): 2049, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29799007

RESUMO

Myotube formation by fusion of myoblasts and subsequent elongation of the syncytia is essential for skeletal muscle formation. However, molecules that regulate myotube formation remain elusive. Here we identify PIEZO1, a mechanosensitive Ca2+ channel, as a key regulator of myotube formation. During myotube formation, phosphatidylserine, a phospholipid that resides in the inner leaflet of the plasma membrane, is transiently exposed to cell surface and promotes myoblast fusion. We show that cell surface phosphatidylserine inhibits PIEZO1 and that the inward translocation of phosphatidylserine, which is driven by the phospholipid flippase complex of ATP11A and CDC50A, is required for PIEZO1 activation. PIEZO1-mediated Ca2+ influx promotes RhoA/ROCK-mediated actomyosin assemblies at the lateral cortex of myotubes, thus preventing uncontrolled fusion of myotubes and leading to polarized elongation during myotube formation. These results suggest that cell surface flip-flop of phosphatidylserine acts as a molecular switch for PIEZO1 activation that governs proper morphogenesis during myotube formation.


Assuntos
Diferenciação Celular , Membrana Celular/metabolismo , Canais Iônicos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfatidilserinas/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/genética , Humanos , Canais Iônicos/genética , Camundongos , Fibras Musculares Esqueléticas/citologia
17.
FASEB J ; 32(4): 1841-1854, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29187363

RESUMO

Several ion channels and transporters regulate fluid secretion in salivary and lacrimal glands. In salivary glands, the major anion channel involved in fluid secretion is the calcium-activated chloride channel anoctamin 1 (ANO1). Several members of the transient receptor potential (TRP) channel superfamily regulate ANO1 activity. Here, we report a functional interaction between thermosensitive TRP vanilloid (TRPV)4 and ANO1 in acinar cells isolated from mouse salivary and lacrimal glands. TRPV4 activation induced chloride currents and shrinkage of acinar cells by increasing intracellular calcium concentrations. The chloride currents evoked by a TRPV4-specific activator (GSK1016790A) were identified as ANO1-mediated currents. Moreover, TRPV4 activation by an inositol 1,4,5-trisphosphate (IP3)-dependent mechanism was found to contribute to the muscarinic pathway of fluid secretion. Muscarinic stimulation of saliva and tear secretion was down-regulated in both TRPV4-deficient mice and in acinar cells treated with a TRPV4-specific antagonist (HC-067047). Furthermore, the temperature dependence of muscarinic salivation was shown to depend mainly on TRPV4. Our results suggest that TRPV4 interacts with IP3 receptors and ANO1 to regulate the muscarinic pathway that mediates salivation and lacrimation.-Derouiche, S., Takayama, Y., Murakami, M., Tominaga, M. TRPV4 heats up ANO1-dependent exocrine gland fluid secretion.


Assuntos
Aparelho Lacrimal/metabolismo , Glândulas Salivares/metabolismo , Canais de Cátion TRPV/metabolismo , Células Acinares/metabolismo , Células Acinares/fisiologia , Potenciais de Ação , Animais , Anoctamina-1/metabolismo , Cálcio/metabolismo , Células Cultivadas , Cloretos/metabolismo , Feminino , Temperatura Alta , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Aparelho Lacrimal/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Glândulas Salivares/citologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
18.
J Physiol Sci ; 68(4): 431-440, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28623463

RESUMO

Hypotonic solutions can cause painful sensations in nasal and ocular mucosa through molecular mechanisms that are not entirely understood. We clarified the ability of human TRPA1 (hTRPA1) to respond to physical stimulus, and evaluated the response of hTRPA1 to cell swelling under hypotonic conditions. Using a Ca2+-imaging method, we found that modulation of AITC-induced hTRPA1 activity occurred under hypotonic conditions. Moreover, cell swelling in hypotonic conditions evoked single-channel activation of hTRPA1 in a cell-attached mode when the patch pipette was attached after cell swelling under hypotonic conditions, but not before swelling. Single-channel currents activated by cell swelling were also inhibited by a known hTRPA1 blocker. Since pre-application of thapsigargin or pretreatment with the calcium chelator BAPTA did not affect the single-channel activation induced by cell swelling, changes in intracellular calcium concentrations are likely not related to hTRPA1 activation induced by physical stimuli.


Assuntos
Crescimento Celular/efeitos dos fármacos , Soluções Hipotônicas/administração & dosagem , Canal de Cátion TRPA1/metabolismo , Cálcio/metabolismo , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Canal de Cátion TRPA1/genética
19.
Cell Rep ; 19(13): 2730-2742, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28658621

RESUMO

Candida albicans can enter skeletal tissue through a skin wound in an immunocompromised host or by contamination during orthopedic surgery. Such Candida osteomyelitis is accompanied by severe pain and bone destruction. It is established that nociceptor innervation occurs in skin and bone, but the mechanisms of nociceptive modulation in fungal inflammation remain unclear. In this study, we show that C. albicans stimulates Nav1.8-positive nociceptors via the ß-glucan receptor Dectin-1 to induce calcitonin gene-related peptide (CGRP). This induction of CGRP is independent of Bcl-10 or Malt-1 but dependent on transient receptor potential cation channel subfamily V member 1 (TRPV1)/transient receptor potential cation channel subfamily A member 1 (TRPA1) ion channels. Hindpaw ß-glucan injection after Nav1.8-positive nociceptor ablation or in TRPV1/TRPA1 deficiency showed dramatically increased osteoinflammation accompanied by impaired CGRP production. Strikingly, CGRP suppressed ß-glucan-induced inflammation and osteoclast multinucleation via direct suppression of nuclear factor-κB (NF-κB) p65 by the transcriptional repressor Jdp2 and inhibition of actin polymerization, respectively. These findings clearly suggest a role for Dectin-1-mediated sensocrine pathways in the resolution of fungal osteoinflammation.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Inflamação/imunologia , Nociceptores/imunologia , Proteínas Repressoras/imunologia , Canais de Cátion TRPV/imunologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Candidíase/metabolismo , Candidíase/patologia , Feminino , Humanos , Inflamação/microbiologia , Camundongos , Proteínas Repressoras/metabolismo , Canais de Cátion TRPV/metabolismo
20.
Sci Rep ; 7: 43132, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225032

RESUMO

Interactions between calcium-activated chloride channel anoctamin 1 (ANO1) and transient receptor potential vanilloid 1 (TRPV1) enhance pain sensations in mice, suggesting that ANO1 inhibition could have analgesic effects. Here we show that menthol and the menthol analogue isopropylcyclohexane (iPr-CyH) inhibited ANO1 channels in mice. The iPr-CyH derivative 4-isopropylcyclohexanol (4-iPr-CyH-OH) inhibited mouse ANO1 currents more potently than iPr-CyH. Moreover, 4-iPr-CyH-OH inhibited the activities of TRPV1, TRP ankyrin 1 (TRPA1), TRP melastatin 8 (TRPM8) and TRPV4. Single-channel analysis revealed that 4-iPr-CyH-OH reduced TRPV1 and TRPA1 current open-times without affecting unitary amplitude or closed-time, suggesting that it affected gating rather than blocking the channel pore. The ability of 4-iPr-CyH-OH to inhibit action potential generation and reduce pain-related behaviors induced by capsaicin in mice suggests that 4-iPr-CyH-OH could have analgesic applications. Thus, 4-iPr-CyH-OH is a promising base chemical to develop novel analgesics that target ANO1 and TRP channels.


Assuntos
Analgésicos/farmacologia , Anoctamina-1/antagonistas & inibidores , Cicloexanóis/farmacologia , Canal de Cátion TRPA1/antagonistas & inibidores , Canais de Cátion TRPV/antagonistas & inibidores , Potenciais de Ação , Animais , Capsaicina/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...